Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 132(4): 45001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592230

RESUMO

BACKGROUND: The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng/kg body weight (BW)/day. BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES: We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION: We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.


Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Inocuidade dos Alimentos , Nível de Efeito Adverso não Observado , Revisões Sistemáticas como Assunto
2.
Mol Metab ; 76: 101781, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482186

RESUMO

OBJECTIVE: Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS: We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS: We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS: The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.


Assuntos
Metabolismo Energético , Neuropeptídeos , Hormônios Peptídicos , Animais , Camundongos , Dieta , Homeostase , Neuropeptídeos/genética , Neuropeptídeos/química , Fragmentos de Peptídeos/farmacologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia
3.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993202

RESUMO

Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Here, we developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R 21 →A). We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by a temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.

4.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683029

RESUMO

We previously demonstrated that Npy1rrfb mice, which carry the conditional inactivation of the Npy1r gene in forebrain principal neurons, display a sexually dimorphic phenotype, with male mice showing metabolic, hormonal and behavioral effects and females being only marginally affected. Moreover, exposure of Npy1rrfb male mice to a high-fat diet (HFD) increased body weight growth, adipose tissue, blood glucose levels and caloric intake compared to Npy1r2lox male controls. We used conditional knockout Npy1rrfb and Npy1r2lox control mice to examine whether forebrain disruption of the Npy1r gene affects susceptibility to obesity and associated disorders of cycling and ovariectomized (ovx) female mice in a standard diet (SD) regimen or exposed to an HFD for 3 months. The conditional deletion of the Npy1r gene increased body weight and subcutaneous white adipose tissue weight in both SD- and HFD-fed ovx females but not in cycling females. Moreover, compared with ovx control females on the same diet regimen, Npy1rrfb females displayed increased microglia number and activation, increased expression of Neuropeptide Y (NPY)-immunoreactivity (IR) and decreased expression of proopiomelanocortin-IR in the hypothalamic arcuate nucleus (ARC). These results suggest that in the ARC NPY-Y1R reduces the susceptibility to obesity of female mice with low levels of gonadal hormones and that this effect may be mediated via NPY-Y1R ability to protect the brain against neuroinflammation.


Assuntos
Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Animais , Feminino , Hormônios Gonadais , Masculino , Camundongos , Doenças Neuroinflamatórias , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Obesidade/genética , Obesidade/metabolismo , Prosencéfalo/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo
5.
J Nerv Ment Dis ; 210(4): 235-245, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349502

RESUMO

ABSTRACT: In recent decades, psychiatry and the neurosciences have made little progress in terms of preventing, diagnosing, classifying, or treating mental disorders. Here we argue that the dilemma of psychiatry and the neurosciences is, in part, based on fundamental misconceptions about the human mind, including misdirected nature-nurture debates, the lack of definitional concepts of "normalcy," distinguishing defense from defect, disregarding life history theory, evolutionarily uninformed genetic and epigenetic research, the "disconnection" of the brain from the rest of the body, and lack of attention to actual behavior in real-world interactions. All these conceptual difficulties could potentially benefit from an approach that uses evolutionary theory to improve the understanding of causal mechanisms, gene-environment interaction, individual differences in behavioral ecology, interaction between the gut (and other organs) and the brain, as well as cross-cultural and across-species comparison. To foster this development would require reform of the curricula of medical schools.


Assuntos
Transtornos Mentais , Neurociências , Psiquiatria , Encéfalo , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Transtornos Mentais/terapia
6.
Int J Mol Sci ; 22(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34445453

RESUMO

NPY and its Y1 cognate receptor (Y1R) have been shown to be involved in the regulation of stress, anxiety, depression and energy homeostasis. We previously demonstrated that conditional knockout of Npy1r gene in the excitatory neurons of the forebrain of adolescent male mice (Npy1rrfb mice) decreased body weight growth and adipose tissue and increased anxiety. In the present study, we used the same conditional system to examine whether the targeted disruption of the Npy1r gene in limbic areas might affect susceptibility to obesity and associated disorders during adulthood in response to a 3-week high-fat diet (HFD) regimen. We demonstrated that following HFD exposure, Npy1rrfb male mice showed increased body weight, visceral adipose tissue, and blood glucose levels, hyperphagia and a dysregulation of calory intake as compared to control Npy1r2lox mice. These results suggest that low expression of Npy1r in limbic areas impairs habituation to high caloric food and causes high susceptibility to diet-induced obesity and glucose intolerance in male mice, uncovering a specific contribution of the limbic Npy1r gene in the dysregulation of the eating/satiety balance.


Assuntos
Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Sistema Límbico/metabolismo , Obesidade/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Ingestão de Alimentos , Técnicas de Inativação de Genes , Intolerância à Glucose/etiologia , Masculino , Camundongos , Obesidade/etiologia , Receptores de Neuropeptídeo Y/genética
7.
Life (Basel) ; 11(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671771

RESUMO

Unexpected events of breath, tone, and skin color change in infants are a cause of considerable distress to the caregiver and there is still debate on their appropriate management. The aim of this study is to survey the trend in prevention, decision-making, and management of brief resolved unexplained events (BRUE)/apparent life-threatening events (ALTE) and to develop a shared protocol among hospitals and primary care pediatricians regarding hospital admission criteria, work-up and post-discharge monitoring of patients with BRUE/ALTE. For the study purpose, a panel of 54 experts was selected to achieve consensus using the RAND/UCLA appropriateness method. Twelve scenarios were developed: one addressed to primary prevention of ALTE and BRUE, and 11 focused on hospital management of BRUE and ALTE. For each scenario, participants were asked to rank each option from '1' (extremely inappropriate) to '9' (extremely appropriate). Results derived from panel meeting and discussion showed several points of agreement but also disagreement with different opinion emerged and the need of focused education on some areas. However, by combining previous recommendations with expert opinion, the application of the RAND/UCLA appropriateness permitted us to drive pediatricians to reasoned and informed decisions in term of evaluation, treatment and follow-up of infants with BRUE/ALTE, reducing inappropriate exams and hospitalisation and highlighting priorities for educational interventions.

8.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477789

RESUMO

Endocrine disrupting chemicals (EDCs) are exogenous chemicals which can disrupt any action of the endocrine system, and are an important class of substances which play a role in the Developmental Origins of Health and Disease (DOHaD) [...].


Assuntos
Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Exposição Ambiental/prevenção & controle , Humanos
9.
Neurosci Biobehav Rev ; 121: 29-46, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248148

RESUMO

Sex is a fundamental biological characteristic that influences many aspects of an organism's phenotype, including neurobiological functions and behavior as a result of species-specific evolutionary pressures. Sex differences have strong implications for vulnerability to disease and susceptibility to environmental perturbations. Endocrine disrupting chemicals (EDCs) have the potential to interfere with sex hormones functioning and influence development in a sex specific manner. Here we present an updated descriptive review of findings from animal models and human studies regarding the current evidence for altered sex-differences in behavioral development in response to early exposure to EDCs, with a focus on bisphenol A and phthalates. Overall, we show that animal and human studies have a good degree of consistency and that there is strong evidence demonstrating that EDCs exposure during critical periods of development affect sex differences in emotional and cognitive behaviors. Results are more heterogeneous when social, sexual and parental behaviors are considered. In order to pinpoint sex differences in environmentally-driven disease vulnerabilities, researchers need to consider sex-biased developmental effects of EDCs.


Assuntos
Disruptores Endócrinos , Animais , Feminino , Masculino , Camundongos , Caracteres Sexuais
10.
Neurosci Biobehav Rev ; 119: 333-347, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045245

RESUMO

Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.


Assuntos
Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Animais , Encéfalo/metabolismo , Feminino , Inativação Gênica , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Caracteres Sexuais
11.
Horm Behav ; 125: 104824, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32755609

RESUMO

Sex hormone-driven differences in gene expression have been identified in experimental animals, highlighting brain neuronal populations implicated in dimorphism of metabolic and behavioral functions. Neuropeptide Y-Y1 receptor (NPY-Y1R) system is sexually dimorphic and sensitive to gonadal steroids. In the present study we compared the phenotype of male and female conditional knockout mice (Npy1rrfb mice), carrying the inactivation of Npy1r gene in excitatory neurons of the brain limbic system. Compared to their male control (Npy1r2lox) littermates, male Npy1rrfb mice exhibited hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis that is associated with anxiety and executive dysfunction, reduced body weight growth, after-fasting refeeding, white adipose tissue (WAT) mass and plasma leptin levels. Conversely, female Npy1rrfb mice displayed an anxious-like behavior but no differences in HPA axis activity, executive function and body weight, compared to control females. Moreover, conditional inactivation of Npy1r gene induced an increase of subcutaneous and gonadal WAT weight and plasma leptin levels and a compensatory decrease of Agouti-related protein immunoreactivity in the hypothalamic arcuate (ARC) nucleus in females, compared to their respective control littermates. Interestingly, Npy1r mRNA expression was reduced in the ARC and in the paraventricular hypothalamic nuclei of female, but not male mice. These results demonstrated that female mice are resilient to hormonal and metabolic effects of limbic Npy1r gene inactivation, suggesting the existence of an estrogen-dependent relay necessary to ensure the maintenance of the homeostasis, that can be mediated by hypothalamic Y1R.


Assuntos
Ansiedade/genética , Comportamento Animal/fisiologia , Metabolismo Energético/genética , Receptores de Neuropeptídeo Y/genética , Caracteres Sexuais , Animais , Ansiedade/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Inativação Gênica/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Sistema Límbico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
12.
Behav Brain Res ; 393: 112772, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544508

RESUMO

Ritual behaviour, intended as a specific, repetitive and rigid form of action flow, appears both in social and non-social environmental contexts, representing an ubiquitous phenomenon in animal life including human individuals and cultures. The purpose of this contribution is to investigate an evolutionary continuum in proximate and ultimate causes of ritual behavior. A phylogenetic homology in proximal mechanisms can be found, based on the repetition of genetically programmed and/or epigenetically acquired action patterns of behavior. As far as its adaptive significance, ethological comparative studies show that the tendency to ritualization is driven by the unpredictability of social or ecological environmental stimuli. In this perspective, rituals may have a "homeostatic" function over unpredictable environments, as further highlighted by psychopathological compulsions. In humans, a circular loop may have occurred among ritual practices and symbolic activity to deal with a novel culturally-mediated world. However, we suggest that the compulsion to action patterns repetition, typical of all rituals, has a genetically inborn motor foundation, thus precognitive and pre-symbolic. Rooted in such phylogenetically conserved motor structure (proximate causes), the evolution of cognitive and symbolic capacities have generated the complexity of human rituals, though maintaining the original adaptive function (ultimate causes) to cope with unpredictable environments.


Assuntos
Comportamento Ritualístico , Animais , Comportamento Animal , Interação Gene-Ambiente , Humanos , Atividade Motora , Filogenia
13.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380724

RESUMO

Prenatal exposure to bisphenol A (BPA) influences the development of sex differences neurologically and behaviorally across many species of vertebrates. These effects are a consequence of BPA's estrogenic activity and its ability to act as an endocrine disrupter even, at very low doses. When exposure to BPA occurs during critical periods of development, it can interfere with the normal activity of sex steroids, impacting the fate of neurons, neural connectivity and the development of brain regions sensitive to steroid activity. Among the most sensitive behavioral targets of BPA action are behaviors that are characterized by a sexual dimorphism, especially emotion and anxiety related behaviors, such as the amount of time spent investigating a novel environment, locomotive activity and arousal. Moreover, in some species of rodents, BPA exposure affected males' sexual behaviors. Interestingly, these behaviors are at least in part modulated by the catecholaminergic system, which has been reported to be a target of BPA action. In the present study we investigated the influence of prenatal exposure of mice to a very low single dose of BPA on emotional and sexual behaviors and on the density and binding characteristics of alpha2 adrenergic receptors. Alpha2 adrenergic receptors are widespread in the central nervous system and they can act as autoreceptors, inhibiting the release of noradrenaline and other neurotransmitters from presynaptic terminals. BPA exposure disrupted sex differences in behavioral responses to a novel environment, but did not affect male mice sexual behavior. Importantly, BPA exposure caused a change in the binding affinity of alpha2 adrenergic receptors in the locus coeruleus and medial preoptic area (mPOA) and it eliminated the sexual dimorphism in the density of the receptors in the mPOA.


Assuntos
Compostos Benzidrílicos/administração & dosagem , Emoções/efeitos dos fármacos , Estrogênios não Esteroides/administração & dosagem , Exposição Materna/efeitos adversos , Fenóis/administração & dosagem , Receptores Adrenérgicos alfa 2/metabolismo , Caracteres Sexuais , Poluentes Ocupacionais do Ar , Animais , Comportamento Animal , Compostos Benzidrílicos/efeitos adversos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiopatologia , Estrogênios não Esteroides/efeitos adversos , Feminino , Masculino , Camundongos , Modelos Animais , Fenóis/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal
14.
Artigo em Inglês | MEDLINE | ID: mdl-31402896

RESUMO

Chemicals used in unconventional oil and gas (UOG) operations can act as endocrine disrupting chemicals and metabolic disruptors. Our lab has reported altered energy expenditure and activity in C57BL/6J mice that were preconceptionally, gestationally, and lactationally exposed via maternal drinking water to a laboratory-created mixture of 23 UOG chemicals from gestational day 1 to postnatal day 21 in 7-month-old female mice with no change in body composition. We hypothesized that allowing the mice to age and exposing them to a high fat, high sugar diet might reveal underlying changes in energy balance. To investigate whether aging and metabolic challenge would exacerbate this phenotype, these mice were aged to 12 months and given a high fat, high sugar diet (HFHSD) challenge. The short 3-day HFHSD challenge increased body weight and fasting blood glucose in all mice. Developmental exposure to the 23 UOG mixture was associated with increased activity and non-resting energy expenditure in the light cycle, increased exploratory behavior in the elevated plus maze test, and decreased sleep in 12 month female mice. Each of these effects was seen in the light cycle when mice are normally less active. Further studies are needed to better understand the behavioral changes observed after developmental exposure to UOG chemicals.

15.
Int J Mol Sci ; 19(6)2018 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-29865233

RESUMO

Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.


Assuntos
Disruptores Endócrinos/farmacologia , Sistema Endócrino/efeitos dos fármacos , Animais , Carcinogênese , Disruptores Endócrinos/efeitos adversos , Epigênese Genética , Feminino , Glucose/metabolismo , Humanos , Obesidade , Gravidez
16.
Psychoneuroendocrinology ; 93: 45-55, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29689422

RESUMO

The interplay between experiences during critical developmental periods and later adult life is crucial in shaping individual variability in stress coping strategies. Exposure to stressful events in early life has strongly programs an individual's phenotype and adaptive capabilities. Until now, studies on programming and reversal strategies in early life stress animal models have been essentially limited to males. By using the perinatal stress (PRS) rat model (a model more sensitive to aging changes) in middle-aged females, we investigated the behavioral and endocrine responses following exposure in later life to an unpredictable chronic mild stress (uCMS) condition for six weeks. PRS by itself accelerated the ageing-related-disruption in the estrous cycle and led to reductions in the levels of estradiol. It also reduced motivational and risk-taking behavior in later life, with PRS females being characterized by a reduction in self-grooming in the splash test, in the exploration of the light compartment in the light/dark box test and in the time spent eating a palatable food in the novelty-induced suppression feeding test. PRS females showed impaired regulation of plasma glucose and insulin levels following a glucose challenge, with a hyperglycemic phenotype, and disrupted feedback of the HPA axis after acute stress with respect to controls. Remarkably, all PRS-induced alterations were modified by exposure to the uCMS procedure, thus resulting in a disease-dependent intervention; controls were not affected by uCMS, except for a slight and transient reduction in body weight, while PRS females displayed a reduced body weight gain for the entire duration of the uCMS procedure. Interestingly, the effects of uCMS on PRS females were still observed up to two months after its termination and the females displayed heightened rhythms of locomotor activity and enhanced sensitivity to reward with respect to controls exposed to uCMS. Our findings indicate that many parameters of the PRS female adult phenotype are shaped by both early and later life experiences in a non-additive way. As a consequence, early stressed individuals may be programmed with a more dynamic phenotype than non-stressed individuals.


Assuntos
Adaptação Psicológica/fisiologia , Estresse Psicológico/fisiopatologia , Fatores Etários , Animais , Comportamento Animal/fisiologia , Corticosterona/sangue , Sistema Endócrino , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Parto , Sistema Hipófise-Suprarrenal/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/metabolismo
17.
Neuropharmacology ; 133: 12-22, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29353053

RESUMO

Cognitive flexibility is the ability to rapidly adapt established patterns of behaviour in the face of changing circumstance and depends critically on the orbitofrontal cortex (OFC). Impaired flexibility also results from altered serotonin transmission in the OFC. The Y1 (Y1R) and Y5 (Y5R) receptors for neuropeptide Y (NPY) colocalize in several brain regions and have overlapping functions in regulating cognition and emotional behaviour. The targeted disruption of gene encoding Y1R (Npy1r gene) in Y5R containing neurons (Npy1rY5R-/- mice) increases anxiety-like behaviour and spatial reference memory. Here we used the same conditional system to analyse whether the coordinated expression of the Y1R and Y5R might be required for behavioural flexibility in reversal learning tasks, OFC serotoninergic tone and OFC neural activity, as detected by immunohistochemical quantification of the immediate-early gene, c-Fos. In addition, we investigated whether the acute treatment of Npy1rY5R-/- mice with the selective serotonin reuptake inhibitor escitalopram affected behavioural flexibility and OFC c-Fos expression. Npy1rY5R-/- male mice exhibit an impairment in performing the reversal task of the Morris water maze and the water T-maze but normal spatial learning, working memory and sociability, compared to their control siblings. Furthermore, Npy1rY5R-/- male mice display decreased 5-hydroxytriptamine (5-HT) positive fibres and increased baseline neural activity in OFC. Importantly, escitalopram normalizes OFC neural activity and restores behavioural flexibility of Npy1rY5R-/- male mice. These findings suggest that the inactivation of Y1R in Y5R containing neurons increases pyramidal neuron activity and dysregulates serotoninergic tone in OFC, whereby contributing to reversal learning impairment.


Assuntos
Citalopram/farmacologia , Hipercinese , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipercinese/tratamento farmacológico , Hipercinese/genética , Hipercinese/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Receptores de Neuropeptídeo Y/genética , Serotonina/metabolismo , Comportamento Estereotipado/efeitos dos fármacos
18.
Horm Behav ; 98: 22-32, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187314

RESUMO

Stressful life events are a major factor in the etiology of several diseases, such as cardiovascular, inflammatory and psychiatric disorders (i.e., depression and anxiety), with the two sexes greatly differing in vulnerability. In humans and other animals, physiological and behavioral responses to stress are strongly dependent on gender, and conditions that are stressful for males are not necessarily stressful for females. Hence the need of an animal model of social chronic stress specifically designed for females. In the present study we aimed to compare the effects of two different chronic stress procedures in female mice, by investigating the impact of 4weeks of nonsocial unpredictable, physical stress by the Chronic Mild Stress paradigm (CMS; Exp.1) or of Social Instability Stress (SIS; Exp.2) on physiological, endocrine and behavioral parameters in adult female mice. CMS had a pronounced effect on females' response to novelty (i.e., either novel environment or novel social stimulus), body weight growth and hormonal profile. Conversely, 4weeks of social instability did not alter females' response to novelty nor hormonal levels but induced anhedonia. Our findings thus showed that female mice were more sensitive to nonsocial stress due to unpredictable physical environment than to social instability stressors. Neither of these stress paradigms, however, induced a consistent behavioral and physiological stress response in female mice comparable to that induced by chronic stress procedures in male mice, thus confirming the difficulties of developing a robust and validated model of chronic psychosocial stress in female mice.


Assuntos
Modelos Animais de Doenças , Caracteres Sexuais , Meio Social , Estresse Fisiológico , Estresse Psicológico/etiologia , Estresse Psicológico/patologia , Adaptação Psicológica/fisiologia , Anedonia/fisiologia , Animais , Ansiedade/psicologia , Comportamento Animal/fisiologia , Peso Corporal , Doença Crônica , Depressão/psicologia , Meio Ambiente , Feminino , Masculino , Camundongos , Comportamento Social , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia
19.
Environ Health ; 16(1): 130, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212512

RESUMO

CORRECTION: After publication of the article [1], it has been brought to our attention that the thirteenth author of this article has had their name spelt incorrectly. In the original article the spelling "Laura Rizzir" was used. In fact the correct spelling should be "Laura Rizzi".

20.
Endocrinology ; 158(3): 461-463, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430918
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...